3.2465 \(\int \frac {1}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx\)

Optimal. Leaf size=189 \[ \frac {2 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{c \sqrt {d+e x} \sqrt {a+b x+c x^2}} \]

[Out]

2*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),(-2*e*(-4*a*c+b^2)^(1/2)/(2*c*
d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2))*2^(1/2)*(-4*a*c+b^2)^(1/2)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)*(c*(e*x+d
)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2)/c/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 189, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {718, 419} \[ \frac {2 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{c \sqrt {d+e x} \sqrt {a+b x+c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2]),x]

[Out]

(2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^
2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqr
t[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(c*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx &=\frac {\left (2 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {\frac {c (d+e x)}{2 c d-b e-\sqrt {b^2-4 a c} e}} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 \sqrt {b^2-4 a c} e x^2}{2 c d-b e-\sqrt {b^2-4 a c} e}}} \, dx,x,\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )}{c \sqrt {d+e x} \sqrt {a+b x+c x^2}}\\ &=\frac {2 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{c \sqrt {d+e x} \sqrt {a+b x+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.61, size = 308, normalized size = 1.63 \[ \frac {i (d+e x) \sqrt {2-\frac {4 \left (e (a e-b d)+c d^2\right )}{(d+e x) \left (\sqrt {e^2 \left (b^2-4 a c\right )}-b e+2 c d\right )}} \sqrt {\frac {2 \left (e (a e-b d)+c d^2\right )}{(d+e x) \left (\sqrt {e^2 \left (b^2-4 a c\right )}+b e-2 c d\right )}+1} F\left (i \sinh ^{-1}\left (\frac {\sqrt {2} \sqrt {\frac {c d^2-b e d+a e^2}{-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}}}{\sqrt {d+e x}}\right )|-\frac {-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}}\right )}{e \sqrt {a+x (b+c x)} \sqrt {\frac {e (a e-b d)+c d^2}{\sqrt {e^2 \left (b^2-4 a c\right )}+b e-2 c d}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2]),x]

[Out]

(I*(d + e*x)*Sqrt[2 - (4*(c*d^2 + e*(-(b*d) + a*e)))/((2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt
[1 + (2*(c*d^2 + e*(-(b*d) + a*e)))/((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*EllipticF[I*ArcSinh[
(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x]], -((-2*c*d + b
*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))])/(e*Sqrt[(c*d^2 + e*(-(b*d) + a*e))/(-
2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])]*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

fricas [F]  time = 0.92, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x^{2} + b x + a} \sqrt {e x + d}}{c e x^{3} + {\left (c d + b e\right )} x^{2} + a d + {\left (b d + a e\right )} x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)/(c*e*x^3 + (c*d + b*e)*x^2 + a*d + (b*d + a*e)*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{2} + b x + a} \sqrt {e x + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)), x)

________________________________________________________________________________________

maple [A]  time = 0.19, size = 287, normalized size = 1.52 \[ \frac {\left (-b e +2 c d -\sqrt {-4 a c +b^{2}}\, e \right ) \sqrt {\frac {\left (2 c x +b +\sqrt {-4 a c +b^{2}}\right ) e}{b e -2 c d +\sqrt {-4 a c +b^{2}}\, e}}\, \sqrt {\frac {\left (-2 c x -b +\sqrt {-4 a c +b^{2}}\right ) e}{-b e +2 c d +\sqrt {-4 a c +b^{2}}\, e}}\, \sqrt {2}\, \sqrt {-\frac {\left (e x +d \right ) c}{b e -2 c d +\sqrt {-4 a c +b^{2}}\, e}}\, \sqrt {e x +d}\, \sqrt {c \,x^{2}+b x +a}\, \EllipticF \left (\sqrt {2}\, \sqrt {-\frac {\left (e x +d \right ) c}{b e -2 c d +\sqrt {-4 a c +b^{2}}\, e}}, \sqrt {-\frac {b e -2 c d +\sqrt {-4 a c +b^{2}}\, e}{-b e +2 c d +\sqrt {-4 a c +b^{2}}\, e}}\right )}{\left (c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+a e x +b d x +a d \right ) c e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x)

[Out]

(-(-4*a*c+b^2)^(1/2)*e-b*e+2*c*d)/c*EllipticF(2^(1/2)*(-(e*x+d)/(b*e-2*c*d+(-4*a*c+b^2)^(1/2)*e)*c)^(1/2),(-(b
*e-2*c*d+(-4*a*c+b^2)^(1/2)*e)/(-b*e+2*c*d+(-4*a*c+b^2)^(1/2)*e))^(1/2))*((2*c*x+b+(-4*a*c+b^2)^(1/2))/(b*e-2*
c*d+(-4*a*c+b^2)^(1/2)*e)*e)^(1/2)*((-2*c*x-b+(-4*a*c+b^2)^(1/2))/(-b*e+2*c*d+(-4*a*c+b^2)^(1/2)*e)*e)^(1/2)*2
^(1/2)*(-(e*x+d)/(b*e-2*c*d+(-4*a*c+b^2)^(1/2)*e)*c)^(1/2)/e*(e*x+d)^(1/2)*(c*x^2+b*x+a)^(1/2)/(c*e*x^3+b*e*x^
2+c*d*x^2+a*e*x+b*d*x+a*d)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{2} + b x + a} \sqrt {e x + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {d+e\,x}\,\sqrt {c\,x^2+b\,x+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d + e*x)^(1/2)*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int(1/((d + e*x)^(1/2)*(a + b*x + c*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {d + e x} \sqrt {a + b x + c x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(1/2)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(1/(sqrt(d + e*x)*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________